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INTRODUCTION

Since the discovery of high-Tc superconductivity, 1,2 the vast majority of research on the
subject has concentrated on the normal state behavior (the region where the resistance, R, ver-
sus temperature, T, curve is linear), and on the zero resistance state. In contrast, much of our
own work during the past two years has focused on the nonequilibrium nonquiescent zones of the
R versus T behavior; these zones include what is referred to as the pre-onset region which
starts where the R versus T data first begins to deviate from linearity at To, the transitional
region in which the R versus T curve reflects nearly a vertical slope beginning near Tc, and the
foot (sometimes called "tail") region in which the slope undergoes a marked change to a much
lower and varying value, connecting eventually with the zero resistance region. These regions are
shown in Figure 1A. The structure of the parent material YIBa2Cu307.6 is given in Figure IB,
and compared to another high-Tc superconductor Tl1Ca 1Ba2 Cu207.6 to show commonality of
pyramidal building blocks, and also to the well known A2 BX4 related archetype. The structure
of Y0 5Gd0 5Ba2Cu307-6 is the same as what is given in Figure 1B (left) with Gd3+ occupying
1/2 of the Y + sites.

EXPERIMENTAL

We have prepared samples of Y1Ba2Cu307_6 , Y0 .5Gd0. 5Ba2Cu3 O7T6 ,Y1Ba2-
(CulXGax)307-,6 and Bi2Ca2Sr2Cu3 O10 by conventional ceramic solid-state mixing, calcining,
sintering, and annealing processing.da-c We have measured transport properties of these
samples using specimen geometry in the form of rectangular solids (cut by a diamond wheel to
3 mm x 1 mm x 1.5 mm) employing four-terminal electrical resistance measurements with highly
accurately controlled temperatures, and through the use of the MIT Bitter Magnet with the
manual or sweep control of the field to 20T. Reference 3b describes the apparatus and precision
of temperature and field control in detail. In the present study, we employed both silver and
platinum epoxied electrodes (giving similar results). Reference 3c shows that resistance versus
temperature curves in ceramic samples are essentially independent of contacts as long as the ac-
cepted (Ref. 3a-c) processing techniques of calcining, sintering and annealing are employed. Our
samples showed single phase physical characterization to the accuracy of X-ray diffraction analysis
techniques. The only exception was the 2223 composition which showed two additional phases in
low concentration unless prepared by rapid solidification from the melt whereby the yield gave only
the single phase (Ref. 3d). We utilized 99.9999 percent pure precursor chemicals. In past ex-
perience trace impurities that were not deliberately doped into the lattice, but were derived from
lower purity precursor oxide and carbonates showed no significant effect on the resistance versus
temperature data.

EXPERIMENTAL RESULTS AND INTERPRETATIONS

The Transitional and Foot Regions

Figures 2A and 2B give for Bi2Sr2Ca2Cu3 Olo the resistance versus inverse absolute tern-
perature data for respectively the transitional and the foot regions in the R versus T behavior, in-
cluding dependence upon applied magnetic field. (The data in Figure 2A are derived by reducing
the new data shown in the inset to the figure). These measurements extrapolate to intersection



at 114 K which agrees with the temperature at which the positive Hall coefficient versus temper-
ature descends rapidly for the 2223 phase (shown in Figure 3).4 These data then specify Tc as
that temperature at which the imposition of a magnetic field (greater the Hc1 ) creates the
d ce of the R versus 1000/T data. Thus the transitional regime is clearly associated
with a degree of the Cooper pairing process that is triggered at, and associated with, the critical
temperature Tc. The structures of Figures 2A and 2B are sufficiently different to indicate
that although both the transitional and foot regions are related to a phenomenon which is
statistically favored at Tc, nonetheless, these regions must reflect very differing contributing
factors as well (to account for the marked differences in Figures 2A and 2B).

The Pre-onset Region in Y0 ,5 G~d. 5Ba2 Cu3 O7.d and YIBa2 Cu 3 0 7 .6

Figure 4 shows magnetic field sweep (period = 60 sec) experiments taken isothermally at
temperatures in the pre-onset region. The location of this region was pinpointed both by seeking
the temperatures at which the magnetic field sweep (to 20T) caused an increase in the 4-terminal
electrical resistance, and also by measuring the accurate R versus T data at zero magnetic field
under equilibrium conditions (Figure 1). The inset to Figure 4 gives the change in resistance
during a 30 sec sweep from B-0 to B=20T as a function of a very accurately controlled
(± 0.05 K) temperature. Inspection of this inset figure shows a straight line containing the data
points which are related to the normal state, the pre-onset region, and the transitional zone.
The data points for the R=0 and the foot regions falls off of this straight line. In that the
pre-onset data points link via a straight line the normal and transitional state data points, we then
interpret this figure to indicate that, in the pre-onset zone, Cooper pairing has already begun but
has not proceeded in high enough a concentration to create a sharp resistance drop. Another
way of interpreting this insufficient concentration is to hypothesize that in the pre-onset zone the
lifetime of the mediator is insufficient to cause ample Cooper pairing to induce a transition to a
supercurrent regime. Although the pre-onset characteristic of deviation from linearity in R ver-
sus T is shown more clearly in polycrystalline ceramic materials than in single crystals, there is
no evidence to indicate that typical nonmagnetic impurities have any effect on the gross struc-
tures of R versus T or on Tc or TRIO. The enhancing of charge transport nonlinearities and
anomalies observed in ceramic materials is related to the effects of grain boundaries in accen-
tuating carrier scattering processes. The nonlinearities in R versus T have not changed
significantly since the early high-Tc samples in which purity was far inferior to the high-Tc
materials prepared by current improved processing.

Figure 5 shows the R versus 1000IT data for the pre-onset region of the R versus T curve
as affected by the applied magnetic field. This figure contrasts the counterparts for the transi-
tional and foot zones (Figures 2A and 2B) in that Figure 5 there is no sign of convergent ex-
trapolation except for low fields ( i 5.5T). From Figure 1, we can see that the pre-onset region
meets the transitional region at about 85 K (= Tc), therefore the convergence at low field in
Figure 5 at T = 93 K relates to a phenomenon occurring at T>Tc, i.e., at To, the pre-onset
temperature. The obvious difference between Figure 5 and Figure 2 indicated that there is a
subtle difference between (the processes/or the stage of the processes) at work in the pre-onset
zone and at work in the transitional region. This suggests that Tc may be a kinetically related
phenomenon.
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A further in&dtion that the pre-onset region relates to the Cooper pairing process is the
experimental observation6 that the pre-onset temperature (TO) and the entire pre-onset zone is
strongly affected (enhanced) by the spin and the effective magnetic moment of the rare earth ion
that is substituted for Y in Y1Ba2 Cu3 O7. 6 . This modification is in the form of an elevation in To
as shown in Figures 6A and 6B. These figures also show a small elevation in the temperature at
which zero resistance (TR=0)6 ,7 begins, also relating to spin and effective magnetic moment. In
low-Tc materials, however, the effect of the spin and magnetic moment of the rare earth
substituting ions is to o rather than enhance superconductivity-related properties as shown in
Figure 6C for the rare earth added to lanthanum. 8 The enhancing effect of spin and magnetic mo-
ment for high-Tc YIBa2Cu3O7.. is attributed to indirect exchange forces between the moment of
the center rare earth ion and the moment of the d9 Cu ion that causes a fluctuation from anti-
ferromagnetism (Ref. 4 and 6). For the Lal.8Sr0.2CuO4 system the addition of the rare earths
(lanthanides) has a similar effect on To but a differing effect on TR=O. This is shown in
Figure 6D.9

More specifically we interpret the elevation of To in Figures 6A, 6B, and 6D to be a conse-
quence of the paramagnetic moment and the spin of the centrosymmetric ion on a Cu2 +d9 ion
whose spin is not compensated aferromagnetically (what is referred to as a spin fluctuation from
antiferromagnetism). Such a condition is established when charge balance in a 07• stoichiometry
(of YIBa2Cu 3O7.d) dictates that a fraction of the chain Cu(1)3 ÷ ions enter a Cu(1)0 + state and
upset the delicately balanced antiferromagnetism of the planar region of the unit cell. The in-
teraction between the spin of the central rare earth and the spin of the spin-fluctuation state oc-
curs via indirect exchange and has been analyzed by a Rudderman-Kittel type approach. 6 This
correlation causes ordering through a spin density wave. 6

One further indication of the kinetic characteristics of the pre-onset region is the observa-
tion of small low-frequency oscillations4 ,8 that commence at To as shown in Figure 7. These
type of oscillations have been observed much earlier in low-Tc materials and attributed therein to
fluctuations in domain properties.10 The instabilities associated with oscillations shown in
Figure 7 are interpreted herein to be related to the processes of virtual exciton formation and
virtual exciton ionization which ,zespectively promote on the one hand, and breakdown, on the
other hand the Cooper pairing regime.

The Zero Resistance Region Time Dependence of Flux Readmission

We have conducted a preliminary study of the recovery of electrical resistance in
YiBa2Cu3_XGaxO7.d using magnetic field sweep studies (in characterizing this polycrystalline
material energy dispersive spectroscopy measurements show Ga weight percent 0.5 ± 0.3, for
x-0.2 to 0.8%, and further characterization by induced electron emission tentatively suggests
that Ga3 - substitutes for Cu3  at chain sites).1 1 The material shows strong levitation, high
density, very low porosity, large grain size, and very high electrical conductivity in the normal
state. In Figure 8 we plot new data on tLe reco'.&-y of alectrical resistance at 83.7 K in the
zero resistance state as a function of the sweep rate of the magnetic field intensity. The data
show that the effect of rate is most clearly observed at low field where the response of
resistance recovery is lowest for the fastest sweep rate (18T in 30 sec). Thus for the most
rapid sweep rate the resistive properties were not restored until a magnetic field of 1.5T was ex-
ceeded. The time response for resistance recovery is about 1 sec. This kinetic parameter or
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dependence is in keeping with a phase transition phenomenon and is thought to be associated
with field-induced fluxoid depinning time criteria as related to the pinning property of defects.
Additional Ga substituted samples yielded the same or similar results, however, substitution of In
for Ga caused the loss of superconductivity. This may be due to the absence of multivalence inSindium.4,6

CONCLUSIONS AND INFERENCES

From this study we conclude the following:

1. The governing mechanistic physics of the pre-onset regime relates to Cooper pairing
and bridges the normal and transitional states. We infer that the pre-onset regime reflects time-
dependent characteristics that suggest if a kinetic banmer could be overcome, then Tc could be
elevated to the neighborhood of To.

2. The transitional and foot regions are influenced by differing phenomena but both contain
characteristics that relate directly to Tc (based on Tc being interpreted as that temperatures
where the B field ( Hcj) causes divergence of the R versus 1000/T data]. However, the transi-
tional and pre-onset regions are governed by subtly differing processes or different stages of the
same process.

3. The foot region and the zero resistance state relate to each other but do not directly
relate to the pre-onset region and we infer that they are not reflective of the same statistical
mechanics observed in the pre-onset region.

4. From inspection of R versus T data in the R. E. BaCuO and BiCaSrCuO systems the
highest possible values of Tc indicated by this study are 160 to 220 K provided chemical process-
ing and/or catalyses can satisfy mediator lifetime criteria, believed to be related to the temper-
ature dependence of the lifetime of the virtual exciton or charge transfer excitation.

Note Added in Proof

It has come to the authors attention that recent work has addressed Ce and Tb substitution
for Y in Y1Ba2Cu3O.. 4 including the effect on the R versus T curves (Ref 12). This work has
shown that for Y0.5Tb0.5Ba2Cu30 7 and for Y0.75Tb0 .2 5Ba2 Cu30 7 , the pre-onset temperatures
are about 128 K and 123 K respectively. Figure 6A suggests that this temperature (for
ThbBa2Cu30 7) should be 136 K. The data from Ref. 12 on YlxCexBa2Cu 30 7 indicate a pre-
onset temperature for x=0.2 a value of about 90 K where Figure 6A suggests for x=1.0 a value
of about 96 K. These results thus correlate very well with our study.

4
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Figure 6C. The depression of Tc corresponding to different rare earths added
(as dopant) to lanthanum. Effect is due to the influence of the paramagnetic
moment of rare earths which causes scission of Cooper pairs, Ref. 8.
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